Parametrized modal logic: the unidimensional case

Philippe Balbiani

Institut de recherche en informatique de Toulouse

CNRS — Toulouse University

Institut de Recherche en Informatique de Toulouse CNRS - INP - UT3 - UT1 - UT2J

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$1. \ \ \text{Modal logics with intersection} \\$

2. Unidimensional parametrized modal logic

Ordinary modal logics

Syntax

$$\blacktriangleright \varphi := p \mid \top \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi$$

Models : M = (W, R, V) where

- $W = \{s, t, \ldots\}$ is a nonempty set
- R binary relation on W

•
$$V : p \mapsto V(p)$$
 subset of W

Some of the truth-conditions

•
$$s \models \Diamond \varphi$$
 iff $\exists t \ (sRt \text{ and } t \models \varphi)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Modal logics with an algebraic structure in modalities Syntax

•
$$\alpha := a \mid (\alpha \cup \alpha) \mid (\alpha \cap \alpha)$$

• $\varphi := p \mid \top \mid \neg \varphi \mid (\varphi \land \varphi) \mid \langle \alpha \rangle \varphi$
Models : $M = (W, \mathbf{R}, V)$ where
• $W = \{s, t, ...\}$ is a nonempty set
• $\mathbf{R} : \alpha \mapsto \mathbf{R}(\alpha)$ binary relation on W such that
• $\mathbf{R}(\alpha \cup \beta) = \mathbf{R}(\alpha) \cup \mathbf{R}(\beta)$
• $\mathbf{R}(\alpha \cap \beta) = \mathbf{R}(\alpha) \cap \mathbf{R}(\beta)$
• $V : p \mapsto V(p)$ subset of W

Some of the truth-conditions

•
$$s \models \langle \alpha \rangle \varphi$$
 iff $\exists t \ (s \mathbf{R}(\alpha) t \text{ and } t \models \varphi)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Modal logics with an algebraic structure in modalities There is no problem with $\langle \alpha \cup \beta \rangle$

$$s \models \langle \alpha \cup \beta \rangle \varphi$$

$$\Leftrightarrow \exists t \ (s\mathbf{R}(\alpha \cup \beta)t \text{ and } t \models \varphi)$$

$$\Leftrightarrow \exists t \ ((s\mathbf{R}(\alpha)t \text{ or } s\mathbf{R}(\beta)t) \text{ and } t \models \varphi)$$

$$\Leftrightarrow \exists t \ ((s\mathbf{R}(\alpha)t \text{ and } t \models \varphi) \text{ or } (s\mathbf{R}(\beta)t \text{ and } t \models \varphi))$$

$$\Leftrightarrow \exists t \ (s\mathbf{R}(\alpha)t \text{ and } t \models \varphi) \text{ or } \exists t \ (s\mathbf{R}(\beta)t \text{ and } t \models \varphi))$$

$$\Leftrightarrow s \models \langle \alpha \rangle \varphi \text{ or } s \models \langle \beta \rangle \varphi$$

$$\Leftrightarrow s \models \langle \alpha \rangle \varphi \lor \langle \beta \rangle \varphi$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Axiomatization will contain $\langle \alpha \cup \beta \rangle p \leftrightarrow \langle \alpha \rangle p \lor \langle \beta \rangle p$

Modal logics with an algebraic structure in modalities There is a problem with $\langle \alpha \cap \beta \rangle$

$$s \models \langle \alpha \cap \beta \rangle \varphi$$

$$\Leftrightarrow \exists t \ (s\mathbf{R}(\alpha \cap \beta)t \text{ and } t \models \varphi)$$

$$\Leftrightarrow \exists t \ ((s\mathbf{R}(\alpha)t \text{ and } s\mathbf{R}(\beta)t) \text{ and } t \models \varphi)$$

$$\Leftrightarrow \exists t \ ((s\mathbf{R}(\alpha)t \text{ and } t \models \varphi) \text{ and } (s\mathbf{R}(\beta)t \text{ and } t \models \varphi))$$

$$\Rightarrow \exists t \ (s\mathbf{R}(\alpha)t \text{ and } t \models \varphi) \text{ and } \exists t \ (s\mathbf{R}(\beta)t \text{ and } t \models \varphi))$$

$$\Leftrightarrow s \models \langle \alpha \rangle \varphi \text{ and } s \models \langle \beta \rangle \varphi$$

$$\Leftrightarrow s \models \langle \alpha \rangle \varphi \wedge \langle \beta \rangle \varphi$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Axiomatization will contain $\langle \alpha \cap \beta \rangle p \rightarrow \langle \alpha \rangle p \land \langle \beta \rangle p$

BML : Boolean Modal Logic Syntax

•
$$\alpha := a | 1 | \overline{\alpha} | (\alpha \cup \alpha)$$

• $\varphi := p | \top | \neg \varphi | (\varphi \land \varphi) | \langle \alpha \rangle \varphi$
Models : $M = (W, \mathbf{R}, V)$ where
• $W = \{s, t, ...\}$ is a nonempty set
• $\mathbf{R} : \alpha \mapsto \mathbf{R}(\alpha)$ binary relation on W such that
• $\mathbf{R}(1) = W \times W$
• $\mathbf{R}(\overline{\alpha}) = W \times W \setminus \mathbf{R}(\alpha)$
• $\mathbf{R}(\alpha \cup \beta) = \mathbf{R}(\alpha) \cup \mathbf{R}(\beta)$
• $V : p \mapsto V(p)$ subset of W

Some of the truth-conditions

•
$$s \models \langle \alpha \rangle \varphi$$
 iff $\exists t \ (s \mathbf{R}(\alpha) t \text{ and } t \models \varphi)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

DAL : Data Analysis Logic

Syntax

$$\begin{aligned} \bullet \ \alpha \ := \ \mathbf{a} \mid (\alpha \cap \alpha) \mid (\alpha \cup \alpha)^+ \\ \bullet \ \varphi \ := \ \mathbf{p} \mid \top \mid \neg \varphi \mid (\varphi \land \varphi) \mid \langle \alpha \rangle \varphi \end{aligned}$$

Models : $M = (W, \mathbf{R}, V)$ where

• $W = \{s, t, \ldots\}$ is a nonempty set

• $\mathbf{R}: \alpha \mapsto \mathbf{R}(\alpha)$ equivalence relation on W such that

•
$$\mathbf{R}(\alpha \cap \beta) = \mathbf{R}(\alpha) \cap \mathbf{R}(\beta)$$

•
$$\mathbf{R}((\alpha \cup \beta)^+) = (\mathbf{R}(\alpha) \cup \mathbf{R}(\beta))^+$$

• $V: p \mapsto V(p)$ subset of W

•
$$s \models \langle \alpha \rangle \varphi$$
 iff $\forall t \ (s \mathbf{R}(\alpha) t \text{ and } t \models \varphi)$

PDL with intersection Syntax

 $\bullet \ \alpha \ := \ \mathbf{a} \mid (\alpha; \alpha) \mid (\alpha \cup \alpha) \mid \alpha^* \mid \varphi? \mid (\alpha \cap \alpha)$ $\bullet \ \varphi \ := \ \mathbf{p} \mid \top \mid \neg \varphi \mid (\varphi \land \varphi) \mid \langle \alpha \rangle \varphi$

Models : $M = (W, \mathbf{R}, V)$ where

• $W = \{s, t, \ldots\}$ is a nonempty set

• \mathbf{R} : $\alpha \mapsto \mathbf{R}(\alpha)$ binary relation on W such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

•
$$\mathbf{R}(\alpha;\beta) = \mathbf{R}(\alpha) \circ \mathbf{R}(\beta)$$

•
$$\mathbf{R}(\alpha \cup \beta) = \mathbf{R}(\alpha) \cup \mathbf{R}(\beta)$$

•
$$\mathbf{R}(\alpha^{\star}) = \mathbf{R}(\alpha)^{\star}$$

•
$$\mathbf{R}(\alpha \cap \beta) = \mathbf{R}(\alpha) \cap \mathbf{R}(\beta)$$

• $V: p \mapsto V(p)$ subset of W

•
$$s \models \langle \alpha \rangle \varphi$$
 iff $\exists t \ (s\mathbf{R}(\alpha)t \text{ and } t \models \varphi)$

 $S5_n^D$: Epistemic Logic with Distributed Knowledge Syntax

 $\blacktriangleright \varphi := p \mid \top \mid \neg \varphi \mid (\varphi \land \varphi) \mid \langle G \rangle \varphi$

where $G \in \wp(\mathcal{A})$ for some fixed finite nonempty set \mathcal{A} of "agents" Models : $M = (W, \mathbf{R}, V)$ where $\blacktriangleright W = \{s, t, ...\}$ is a nonempty set of "worlds"

- ▶ \mathbf{R} : $\wp(\mathcal{A}) \longrightarrow \wp(W \times W)$ is such that for all $G \in \wp(\mathcal{A})$
 - $\mathbf{R}(G) = \bigcap \{ \mathbf{R}(\{i\}) : i \in G \}$ is an equivalence relation on W

• $V : p \mapsto V(p)$ subset of W

•
$$s \models \langle G \rangle \varphi$$
 iff $\exists t \ (s\mathbf{R}(G)t \text{ and } t \models \varphi)$

2. Unidimensional parametrized modal logic

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ordinary modal logics

Syntax

$$\blacktriangleright \varphi := p \mid \top \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi$$

Models : M = (W, R, V) where

- $W = \{s, t, \ldots\}$ is a nonempty set
- ▶ *R* binary relation on *W*

•
$$V : p \mapsto V(p)$$
 subset of W

•
$$s \models \Diamond \varphi$$
 iff $\exists t \ (sRt \text{ and } t \models \varphi)$

Ordinary modal logics with a \Diamond of arity 2 Syntax

$$\blacktriangleright \varphi := p \mid \top \mid \neg \varphi \mid (\varphi \land \varphi) \mid (\varphi \Diamond \varphi)$$

Models : M = (W, R, V) where

- $W = \{s, t, \ldots\}$ is a nonempty set
- R ternary relation on W

•
$$V : p \mapsto V(p)$$
 subset of W

Some of the truth-conditions

•
$$s \models \varphi \Diamond \psi$$
 iff $\exists u \; (\exists t \; (t \models \varphi \; \mathsf{and} \; sR(t, u)) \; \mathsf{and} \; u \models \psi)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

New modal logics with a \blacklozenge of arity 2

Syntax

 $\blacktriangleright \varphi := p \mid \top \mid \neg \varphi \mid (\varphi \land \varphi) \mid (\varphi \blacklozenge \varphi)$

Models : M = (W, R, V) where

- $W = \{s, t, \ldots\}$ is a nonempty set
- R ternary relation on W

•
$$V : p \mapsto V(p)$$
 subset of W

Some of the truth-conditions

•
$$s \models \varphi \blacklozenge \psi$$
 iff $\exists u \; (\forall t \; (t \models \varphi \Rightarrow sR(t, u)) \text{ and } u \models \psi)$

From $R \subseteq W \times W \times W$ to $\mathbf{R} : \wp(W) \longrightarrow \wp(W \times W)$ For all $A \in \wp(W)$ and for every $s, u \in W$

▶ $s\mathbf{R}(A)u$ exactly when $\forall t \ (t \in A \Rightarrow sR(t, u))$

An important property For all $A \in \wp(W)$ $\blacktriangleright \mathbf{R}(A) = \bigcap \{\mathbf{R}(\{t\}) : t \in A\}$

Other properties

For all $A, B \in \wp(W)$

$$\blacktriangleright \ \mathbf{R}(\emptyset) = W \times W$$

• if
$$A \subseteq B$$
 then $\mathbf{R}(A) \supseteq \mathbf{R}(B)$

New modal logics with a \blacklozenge of arity 2 Syntax

 $\blacktriangleright \varphi := p \mid \top \mid \neg \varphi \mid (\varphi \land \varphi) \mid (\varphi \blacklozenge \varphi)$

Models : $M = (W, \mathbf{R}, V)$ where

• $W = \{s, t, \ldots\}$ is a nonempty set

▶ **R**: $\wp(W) \longrightarrow \wp(W \times W)$ such that for all $A \in \wp(W)$ ▶ **R**(A) = \bigcap {**R**({t}) : t \in A}

•
$$V: p \mapsto V(p)$$
 subset of W

Some of the truth-conditions

•
$$s \models \varphi \blacklozenge \psi$$
 iff $\exists u \ (s \mathbf{R}(V(\varphi)) u \text{ and } u \models \psi)$

Abbreviation

 $\blacktriangleright (\varphi \blacksquare \psi) := \neg (\varphi \blacklozenge \neg \psi)$

Corresponding truth-condition

• $s \models \varphi \blacksquare \psi$ iff $\forall u \ (s \mathbf{R}(V(\varphi))u \Rightarrow u \models \psi)$

New modal logics with a \blacklozenge of arity 2 Syntax

 $\blacktriangleright \varphi := p \mid \top \mid \neg \varphi \mid (\varphi \land \varphi) \mid \langle \varphi \rangle \varphi$

Models : $M = (W, \mathbf{R}, V)$ where

• $W = \{s, t, \ldots\}$ is a nonempty set

▶ **R**: $\wp(W) \longrightarrow \wp(W \times W)$ such that for all $A \in \wp(W)$ ▶ **R**(A) = \bigcap {**R**({t}) : t \in A}

• $V : p \mapsto V(p)$ subset of W

Some of the truth-conditions

•
$$s \models \langle \varphi \rangle \psi$$
 iff $\exists u \ (s \mathbf{R}(V(\varphi)) u \text{ and } u \models \psi)$

Abbreviation

 $\blacktriangleright \ [\varphi]\psi \ := \ \neg \langle \varphi \rangle \neg \psi$

Corresponding truth-condition

• $s \models [\varphi] \psi$ iff $\forall u \ (s \mathbf{R}(V(\varphi)) u \Rightarrow u \models \psi)$

Frames

Structures of the form (W, \mathbf{R}) where

- $W = \{s, t, \ldots\}$ is a nonempty set
- $\mathbf{R}: \wp(W) \longrightarrow \wp(W \times W)$

Conjunctive frames

Frames (W, \mathbf{R}) such that for all $A \in \wp(W)$

 $\blacktriangleright \mathbf{R}(A) = \bigcap \{ \mathbf{R}(\{t\}) : t \in A \}$

Paraconjunctive frames

Frames (W, \mathbf{R}) such that $\mathbf{R}(\emptyset) = W imes W$ and for all $A, B \in \wp(W)$

• if $A \subseteq B$ then $\mathbf{R}(A) \supseteq \mathbf{R}(B)$

Unidimensional parametrized modal logic (UPML) Valid formulas

- tautologies
- ▶ $[p](q \rightarrow r) \rightarrow ([p]q \rightarrow [p]r)$
- ▶ $[⊥]p \to p$
- $\blacktriangleright \ \langle \bot \rangle p \to [\bot] \langle \bot \rangle p$
- $[\bot](p \to q) \to ([p]r \to [q]r)$

Admissible rules

Axiomatization

► let K_c be the calculus consisting of the above axioms and rules

Completeness in the class of all paraconjunctive frames

- (W_c, \mathbf{R}_c, V_c) is paraconjunctive: $\mathbf{R}_c(\emptyset) = W_c \times W_c$ and for all $A, B \in \wp(W_c)$
 - if $A \subseteq B$ then $\mathbf{R}_c(A) \supseteq \mathbf{R}_c(B)$
- ▶ Truth Lemma: for all formulas φ and for all $s \in W_c$
 - $s \models \varphi$ if and only if $\varphi \in s$
- K_c exactly axiomatizes validities in the class of all paraconjunctive frames

Completeness in the class of all conjunctive frames

- every paraconjunctive frame is a bounded morphic image of a conjunctive frame
- K_c exactly axiomatizes validities in the class of all conjunctive frames

What has been done ?

- syntax of UPMLs
- semantics
- canonical model construction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- copying construction
- filtration method

What can be done ?

- import first-order ideas into UPMLs
- develop the model theory of UPMLs
- elaborate the correspondence theory of UPMLs
- investigate the computability of the satisfiability problem in such-and-such class of conjunctive frames and develop automatic procedures for solving it
- compare UPMLs with other forms of modal logics based on parametrized connectives
- construct the duality theory of UPMLs
- relationships with
 - Shi, C., Sun, Y. Logic of convex order. Studia Logica 109 (2021) 1019–1047.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Traditional syntax of EL with Distributed Knowledge

• Formulas: $\langle G \rangle \varphi$

where $G \in \wp(\mathcal{A})$ for some fixed finite nonempty set \mathcal{A} of "agents"

Traditional models of EL with Distributed Knowledge $M = (W, \mathbf{R}, V)$ where $\blacktriangleright W = \{s, t, ...\}$ is a nonempty set of "worlds" $\blacktriangleright \mathbf{R} : \wp(\mathcal{A}) \longrightarrow \wp(W \times W)$ is such that for all $G \in \wp(\mathcal{A})$ $\blacktriangleright \mathbf{R}(G) = \bigcap \{\mathbf{R}(\{i\}) : i \in G\}$ is an equivalence relation on W

Some of the traditional truth-conditions of EL with Distributed Knowledge

•
$$s \models \langle G \rangle \varphi$$
 iff $\exists t \ (s \mathbf{R}(G) t \text{ and } t \models \varphi)$

What more ? Bidimensional parametrized modal logic

– Syntax

$$\blacktriangleright \varphi := p \mid \top \mid \neg \varphi \mid (\varphi \land \varphi) \mid \langle \alpha \rangle \varphi - \text{``world formulas''}$$

$$\blacktriangleright \alpha := a \mid \top \mid \neg \alpha \mid (\alpha \land \alpha) \mid \langle \varphi \rangle \alpha - \text{``agent formulas''}$$

- Models : $M = (W, \mathcal{A}, \mathbf{R}, \mathbf{F}, V)$ where
 - $W = \{s, t, \ldots\}$ is a nonempty set of "worlds"

•
$$\mathcal{A} = \{i, j, \ldots\}$$
 is a nonempty set of "agents"

$$\blacktriangleright \mathsf{R}: \wp(\mathcal{A}) \longrightarrow \wp(W \times W)$$

$$\blacktriangleright \mathsf{F}: \wp(W) \longrightarrow \wp(\mathcal{A} \times \mathcal{A})$$

• $V : p \mapsto V(p)$ subset of W and $a \mapsto V(a)$ subset of \mathcal{A} Some of the truth-conditions

•
$$s \models \langle \alpha \rangle \varphi$$
 iff $\exists t \in W (s \mathbf{R}(V(\alpha))t \text{ and } t \models \varphi)$

• $i \models \langle \varphi \rangle \alpha$ iff $\exists j \in \mathcal{A} \ (i\mathbf{F}(V(\varphi))j \text{ and } j \models \alpha)$

Thank you

<□ > < @ > < E > < E > E のQ @